Designing and Using Human—Computer Interfaces and Knowledge Based Systems
edited by G. Salvendy and M. J. Smith
Elsevier Science Publishers B.V., Amsterdam, 1989 — Printed in the Netherlands

Usability Engineering at a Discount
Jakob Nielsen

Technical University of Denmark

Department of Computer Science; Building 344
DK-2800 Lyngby Copenhagen; Denmark
email: dat INENEUVM1 .bitnet

Abstract

The “discount usability engineering” method consists of scenarios, simplified
thinking aloud, and heuristic evaluation and is intended to alleviate the current prob-
lem where usability work is seen as too expensive and difficult by many developers.

1. Introduction

Usability engineering [Whiteside et al. 1989] is the discipline of improving the
usability of user interfaces in a situation of resource constraints. Many methods for
usability engineering exist and are available for use if people want to use them. Un-
fortunately, the available evidence shows that many companies do not use such basic
usability engineering techniques as early focus on the user, empirical measurement,
and iterative design [Gould and Lewis 1983].

One important reason usability engineering is not used in practice is the cost of
using its techniques. Or rather, the reason is the perceived cost of using those tech-
niques, as this paper will show that many usability techniques can be used quite
cheaply. It should be no surprise, however, that practitioners view usability methods
as expensive considering for example that a recent paper in the widely read journal
Communications of the ACM estimated that the “costs required to add human factors
elements to the development of software” was $ 128,330 [Mantei and Teorey 1988].
This sum is several times the total budget for usability in most smaller companies.

British studies [Bellotti 1988] indicate that many developers don't use usability
engineering because HCT is seen as too time consuming and expensive and because
the techniques are often intimidating in their complexity. This paper aims at address-
ing these two problems. Further reasons given by Bellotti were that there were some-
times no perceived need for HCI and a lack of awareness about appropriate tech-
niques. These two problems must be addressed by education and propaganda, but
even for that purpose, simpler usability methods should help.

2. The “Discount” Method

We present a set of methods which is substantially cheaper in use than the more

395

extensive usability engineering methods usually advocated by most researchers.
These methods may not be quite as scientifically valid as more advanced and compli-
cated methods and they may not find quite as many of the usability problems in a
given interface. But they stand a much better chance of actually being used in practi-
cal design situations in smaller companies and they should therefore be viewed as a
way of serving the user community.

The “discount usability engineering” method is based on the use of the follow-
ing techniques:

e scenarios [Nielsen 1987] and fast iteration

- small thinking aloud studies [Nielsen 1988]

e heuristic evaluation [Molich and Nielsen 1989]

This is really a mixture of two different methods. The first method is empirical
and consists of the development of scenarios which are tested in small thinking aloud
studies, often using only a single test subject. On the basis of the thinking aloud re-
sults, the scenario is changed using fast iteration and is then tested again. The other
method is more analytical and is used in the inner loop of the design (i.e. during the
fast iteration). Heuristic evaluation is used to let designers make informed judge-
ments when they are trying to decide what changes to make in the scenario and how
to translate the scenario into a complete design.

2.1. Scenarios

Scenarios are a special kind of prototyping as shown in Figure 1. The entire idea
behind prototyping is to cut down on the complexity of implementation by eliminat-
ing parts of the full system. Horizontal prototypes reduce the level of functionality
and result in a user interface surface layer, while vertical prototypes reduce the num-
ber of features and implement the full functionality of those chosen (i.e. we get a part
of the system to play with).

Scenarios finally reduce both the level of functionality and the number of fea-
tures and are only able to simulate the user interface as long as a test user follows a
previously planned path.

Since the scenario is small, we can afford to change it frequently, and if we use
cheap, small thinking aloud studies, we can also afford to test each of the versions.
Therefore scenarios are a way of
getting quick and frequent feedback Different features
from users. ~ B Horizontal

‘Scenarios can be implemented Scenarnio " prototype

as paper mock-ups or in simple pro- N %\ .
totyping environments such as Hy- \\\ ba¥ival N \ \% =
perCard [Nielsen 1989]. This is an // S
additional savings compared to more / B
complex prototypes requiring the /4 =

fad g . ' Lo
use of advanced software tools 1///
2.2. Simplified Thinking Aloud Vertical [/

prototype Full system

Traditionally, thinking aloud
studies are conducted with psycholo- Figure 1.

gists or user interface experts as ex- The two dimensions of prototyping.

396

outlier
8 } " ¢ t @+ ¢ } "

o

< 1
:7_

RS

g 64 e o 1
2

S 5 | 4
Qo

3

> 4 e o ° 1
3

8 3 @ ee o 1
3

“—

S 2 7 ® e @® -
A

[}

s 1] 1
2

0 t ; t } ¢ t ; t :

0 10 20 30 40 50 60 70 80 90 100
Judged quality of thinking aloud experiment

= regression line excluding outlier = including outlier

Figure 2.)

Scatterplot of regression analysis of relation between the quality of a thinking aloud

experiment (on a 0-100 scale) and the number of usability problems found in Mac-

Paint v. I (out of a total of 8 problems). Regression equation excluding the outlier:
y=0.067x +0.115, R?>=0.58

perimenters who videotape the subjects and perform detailed protocol analysis. This
kind of method is certainly intimidating for ordinary developers and it is perhaps not
surprising that recent studies of Danish computer companies and data processing de-
partment [Milsted et al. 1989] showed that only 6 % used the thinking aloud method.
Those developers who have used the thinking aloud method seem [Jgrgensen 1989]
to be happy about it, however, and my studies [Nielsen 1988] show that computer
scientists are indeed able to apply the thinking aloud method effectively to evaluate
user interfaces with a minimum of training and that even fairly methodologically
primitive experiments will succeed in finding many usability problems.

Figure 2 summarizes the results from [Nielsen 1988] and shows that most of the
experimenters were able to find about half of the usability problems in the program
tested on the basis of doing thinking aloud studies of three subjects per group of ex-
perimenters. The thinking aloud studies discussed here were the first ones conducted
by these experimenters and one would expect them to do better next time. It is inter-
esting to extrapolate along the regression line to see what would happen in a 100%
methodologically correct experiment: The estimate from Figure 2 is that such an ex-
periment would find about 80 % of the total number of usability problems. Since this
is a very nice proportion for a discount method, we conclude that discount thinking
aloud studies normally should not use more than three experimental subjects. If there
is time to run more subjects, it is probably better to change the user interface first on
the basis of the usability problems identified from the first three studies.

Another major difference between simplified and traditional thinking aloud is
that data analysis can be done on the basis of the notes taken by the experimenter in-

stead of by video tapes. Recording, watching, and ana-
lyzing the video tapes is expensive and takes a lot of
time which is better spent on running more subjects and
on testing more iterations of redesigned user interfaces.

397

Simple and natural dialogue
Speak the user's language
Minimize user memory load
Be consistent

Provide feedback

Provide clearly marked exits
Provide shortcuts

Good error messages
Prevent errors

Table 1.
Usability heuristics after
[Molich and Nielsen 1989].

Video taping should only be done in those cases (such
as research studies) where absolute certainty is needed.
In discount usability engineering we don't aim at per-
fection anyway, we just want to find most of the usabil-
ity problems, and a survey of 11 software engineers

[Perlman 1988] found that they rated simple tests of
prototypes as almost twice as useful as video protocols.

2.3. Heuristic Evaluation

Current collections of usability guidelines typically have on the order of one
thousand rules to follow and are therefore seen as intimidating by developers. For the
discount method we advocate cutting the complexity by two order of magnitudes and
instead rely on a small set of heuristics such as the nine basic usability principles
from [Molich and Nielsen 1989] listed in Table 1.

These principles can be presented in a single lecture and can be used to explain
a very large proportion of the problems one observes in user interface designs. Un-
fortunately it does require some experience with the principles to apply them suffi-
ciently thoroughly, so it might be necessary to spend some money on getting an out-
side usability consultant to do a heuristic evaluation. On the other hand, even non-
experts can find many usability problems by heuristic evaluation and many of the re-
maining problems would be revealed by the simplified thinking aloud test. It can also
be recommended to let several different people perform a heuristic evaluation as dif-
ferent people locate different usability problems. This is another reason why even
discount usability engineers might consider setting aside a part of their budget for
outside usability consultants.

Table 2 shows the final result of adjusting a usability budget according to the
discount usability engineering method. The numbers in Table 2 are for a medium
scale software project (about 32,000 lines of code). For small projects, even cheaper
methods can be used as discussed in the examples below, while really large projects
ought to devote sufficient funds to usability to allow use of the full-blown traditional
methodology.

3. Two Examples: Redesigning Bank and Pension Statements

Two projects were conducted using the “discount usability engineering” method
in practice. The first project concerned the improvement of a set of bank account
statements and other computer printouts sent from a small Danish bank to its custom-
ers. The original designs were quite good as they had been developed by bank staff
with knowledge of usability principles, but it was still felt that they could be im-
proved. The second project concerned developing a printout of individualized projec-
tions of the result of investing in Individual Retirement Accounts (IRAs). Both sets
of printouts were improved using the scenario technique, fast iteration, and cheap
thinking aloud studies as well as usability heuristics.

At the beginning of the bank statement redesign a small study of the vocabulary

398

Original usability cost estimate by [Mantei and Teorey 1988] $ 128,330
Scenario developed as paper mockup instead of on video tape -$ 2,160
Prototyping done in HyperCard instead of in professional software tool -$ 16,000
All user testing done with 3 subjects instead of 5 -$ 11,520
Thinking aloud studies analyzed by taking notes instead of by video taping -$ 5,520
Special video laboratory not needed -$17,600
Only 2 focus groups instead of 3 for market research -$ 2,000
Only 1 focus group instead of 3 for accept analysis -$ 4,000
Questionnaires only used in feedback phase, not after prototype testing -$ 7,200
Outside usability consultant for heuristic evaluation +$ 3,000
Cost for “discount usability engineering” project $ 65,330
Table 2.

Cost savings in a medium scale software project by using the discount usability engineer-
ing method instead of the more thorough usability methods normally recommended.

used in the original statements was conducted. 26 words were listed on a one page
questionnaire and 30 people rated each word on a 1-5 scale according to how well
they knew its meaning. This is a typical “discount” meihod, since a more careful
study would have asked the respondents to also write down their definition of each
word because there is a large risk that people will say that they do know a word even
if they don't. Indeed, it turned out that only 7 of the 26 words were rated at or below
average understandability, and the thinking aloud studies later in the projects re-
vealed problems with some of the other words also.

The method was used in spite of these problems because it was cheap: It was
easy to get respondents since they were not intimidated by having to write down
word definitions and since it took only about 5 minutes to answer the questionnaire.
The result was of considerable value in the initial redesigns since it indicated the
kind of words which should definitely be avoided, and furthermore the “hard” nature
of the data made it easy to convince bank representatives that words which they felt
to be very natural could be hard to understand. For example, the official abbreviation
of the Danish currency, DKK, got the second lowest rating of the 26 terms tested. At
the time of the test, the international standard for currency abbreviations was still
new enough to be unknown and people only knew the traditional abbreviation, Dkr.

Several of the changes made during the redesign followed well-known usability

heuristics, such as e.g.

+ Consistency: Write all amounts in favor of the bank with a minus and all numbers
in favor of the customer with a plus. To be user-oriented, use these signs rather
than the reverse. For external consistency, write the prefix in front of the number
instead of following the Cobol legacy of writing them at the end of the number.

* The gestalt law of proximity: Instead of writing “kr._____ 1007, write
‘o 100 kr.” (where the underscores represent spaces in the printout to allow
room for larger amounts, and r. is the standard abbreviation for the Danish cur-
rency, kroner, which can customarily be written either before or after the digits).

During empirical testing of the IRA designs, a new usability principle became
apparent: Enable users to check their own understanding. To some extent this is a
corollary of the general principle of providing feedback, but in the context of a non-
interactive computer printout, feedback takes a special meaning. In reading the very

complicated IRA calculations, including
strange taxation rules, projections of infla-
tion and interest rates, etc., the test sub-
jects naturally became quite cautious and
wanted to check that they had understood
the different items in the printout correct-
ly. They typically did so by matching
numbers between the different parts of the
prinfout which they felt should corre-
spond. In the first several versions of the
design, this was not always immediately
possible e.g. because a pension was listed
in one table as amount available at retire-
ment and in another table as sum of yearly
payments (which is different because of
accruing interest).

In later versions of the design, enable

Original ~ Revised

design design
“Size of deposit” 79 % 95% p<.01
“Commission” 34% 53% p<.05
“Interest rates” 20% 58 % p<.01
“Credit limit” 983% 99% p<.05
Average correct 56 % 76 % p<.01
Task time (sec.) 315 303 n.s.
Subj. eval. [1-5] 2.8 3.0 n.s.

Table 3.

Result of Experiment 1: a double blind test
(N=152) comparing the original and the
revised version of a bank account state-
ment. The values measured are: How
many of subjects could correctly answer
each of four questions about the contents

of the statement (and the combined aver-
age for those four questions), the average
time needed by subjects to review the
statement and answer the questions, and
the subjects’ average subjective rating

(scale: 1 [bad] to 5 [good]).

The rightmost column indicates whether
the difference between the two account
statements is statistically significant ac-
cording to a t-test.

users to check their own understanding
was used as a design heuristic and care
was taken to have the same numbers ap-
pear in tables referring to the same con-
cept (together with the calculation show-
ing e.g. why the final amount in the table
was larger or smaller because of interest
or taxes).

In some of the versions of the IRA
projection, a graphical representation was
tested in addition to the traditional tables of numbers. The test subjects were very en-
thusiastic about these graphs and felt that they were much more easy to grasp than
the tables. In spite of this, the thinking aloud studies showed that several subjects ac-
tually misinterpreted the graph.

In both projects empirical testing was done with the basic purpose of assessing
the understandability of the computer printouts and finding where they should be im-
proved. Simplified thinking aloud was used since it is ideal for these goals.

In the design of bank account statements, we tested 8 different versions (the
original design plus 7 redesigns) before we were satisfied. Even so, the entire project
required only about 90 hours, including designing 7 versions of 12 different kinds of
bank statement (not all the forms were changed in each version, however) and testing
them in thinking aloud experiments. The IRA projection was developed in 11 ver-
sions, 6 of which were tested with either one or two subjects. This project required
about 60 hours.

4. Validation of the Redesign

To validate the redesign, a further experiment was done using traditional statis-
tical measurement methods. It should be stressed that this validation was a research
exercise and not part of the discount usability engineering method itself: The usabili-
ty engineering work ended with the development of the improved bank statements,

400

but as a check of the usability engineering methods used, it was decided to conduct a
usability measurement of one of the new designs compared with the original design.

4.1. Experimert 1: Double Blind Test Taking Usability Measurements

The validation was done using a double blind test: 38 experimenters each ran 4
subjects (for a total of 152 subjects) in a between-subjects design. Neither the experi-
menters nor the subjects knew which was the original bank statement and which was
the new. The results which are reported in Table 3, show clear and highly statistically
significant improvements in measurement values for the new statement on the usabil-
ity parameter which had been the goal during the iterative design (understandability
of the information in the statement as measured by the average number of correct an-
swers to four questions concerning the contents of the statement). Two other usabili-
ty parameters which had not been considered goals in the iterative design process
(efficiency of use and subjective satisfaction) were also measured and the two ver-
sions of the statement got practically identical scores on those.

This study supports the use of discount usability engineering techniques and
shows that they can indeed cause measurable improvements in usability. However,
the results also indicate that one should be cautious in setting the goals for usability
engineering work. Those usability parameters which have no goals set for improve-
ment risk being left behind as the attention of the usability engineer is concentrated
on the official goals. In this study, no negative effects in the form of actual degrada-
tion in measured usability parameters were observed but one can probably not al-
ways count on being so lucky.

4.2. Experiment 2: Recommendations from People without Usability Expertise

Two groups of evaluators were shown the two versions of the bank statement
(without being told which one was the revised version) and asked which one they
would recommend the bank to use. All the evaluators were computer science stu-
dents who had signed up for a user interface design course but who had not yet been
taught anything in the course. This meant that they did not know e.g. the usability
heuristics from Table 1 which they might
otherwise have used to evaluate the two

. Grp. A Grp. B
versions. N=38 N=21
Group A consisted of the experimen- | rocommends original 16% 48 %

ters from Experiment 1 (reported above) Recommends revised 68 % 48 %

who had run two short experiments with |can't recommend either 16 % 5%
each version of the bank statement, while
the evaluators in Group B had to make |Table 4.

their recommendation on the basis of their | Result of Experiment 2: asking two groups
own personal evaluation of the two ver- |of people to recommend one of the two
sions. The results are reported in Table 4 |versions (original or revised) of a bank ac-
and show a significant difference in the |count statement. In Grp. A, each person
recommendations: Evaluators in Group A |had first run an empirical test with four
prefer the revised version while evalua- |subjects, while the people in Grp. B had
tors in Group B are split equally between |no basis for their recommendation other
the two versions. This latter result is prob- |than their own subjective evaluation.

ably a reflection of the fact that the two |The difference between the two groups is
versions are almost equally subjectively statistically significant at the p<.05 level.

401

satisfying according to the measurement results reported in Table 3.

If we accept the statistical measurement results in Table 3 as defining the re-
vised version as the “best”, we see that Group A was drastically more able to make
the correct recommendation than Group B. This was in spite of the fact that each of
the individuals in Group A had knowledge only of the experimental results from the
four subjects run by that individual (the aggregate statistics were not calculated until
after the recommendations had been made).

So we can conclude that running even a small, cheap empirical study can help
non-human factors people significantly in their evaluation of user interfaces. If we
eliminate the evaluators who did not make a recommendation, this experiment shows
that running just two subjects for each version in a small test improved the probabili-
ty for recommending the best of two versions from 50% to 81%.

5. Conclusions

The discount usability engineering method is significantly cheaper than tradi-
tional methods but even so it seems to identify most of the usability problems which
can be found by the expensive methods. It should be stressed that the discount meth-
od is not as good as the traditional methods: Using traditional methods will give you
more information in many cases. But on the other hand,-using the discount method is
much, much better than using no usability methods at all. Even if the result is not
perfect, the resulting product will still have been improved significantly. In practice,
especially in smaller companies or in smaller projects, there often is just no other
feasible alternative than to rely on the discount usability method if any usability
work is to be done.

References

Bellotti, V.: Implications of current design practice for the use of HCI techniques, in Jones, D.M.
and Winder, R. (Eds): People and Computers 1V, Cambridge University Press, Cambridge, UK,
1988, pp. 13-34. i

Gould, J.D. and Lewis, C.: Designing for usability: Key principles and what designers think, Proc.
ACM CHI'83 (Boston, MA , 12-15 December 1983), pp. 50-53.

Jorgensen. A.H.: Using the thinking-aloud method in system development, Proc. Third Inl. Conf.
Human-Computer Interaction (Boston, MA, 18-22 September 1989).

Mantei, M.M. and Teorey, T.J.: Cost/benefit analysis for incorporating human factors in the soft-
ware lifecycle, Communications of the ACM 31, 4 (April 1988), pp. 428-439.

Milsted, U., Varnild, A., and Jgrgensen, A.H.: Hvordan sikres kvaliteten af brugergrensefladen i
systemudviklingen (Assuring the quality of user interfaces in system development, in Danish),
Proc. NordDATA'89 Joint Scandinavian Computer Conference (Copenhagen, Denmark, 19-22
June 1989).

Molich, R., and Nielsen, J.: Improving the human-computer interface: What designers know about
traditional interface design, manuscript submitted for publication 1989.

Nielsen, J.: Using scenarios to develop user friendly videotex systems, Proc. NordDATA'S87 Joint
Scandinavian Computer Conference (Trondheim, Norway, 15-18 June 1987).

Nielsen, J.: Evaluating the thinking aloud technique for use by computer scientists, Proc. IFIP
W.G. 8.1. Intl. Workshop on Human Factors of Information Systems Analysis and Design (Lon-
don, UK, 28-29 July 1988).

Nielsen, J.: Prototyping user interfaces using an object-oriented hypertext programming system,
Proc. NordDATA'89 Joint Scandinavian Computer Conference (Copenhagen, Denmark, 19-22
June 1989).

Perlman, G.: Teaching user interface development to software engineers, Proc. Human Factors So-
ciety 32nd Annual Meeting (1988), pp. 391-394.

Whiteside, J., Bennett, J., and Holtzblatt, K.: Usability engineering: Our experience and evolution,
in M. Helander (Ed.): Handbook of Human-Computer Interaction, North-Holland, 1989.

